Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(34): e2305069, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870173

RESUMO

Wavelength conversion based on hybrid inorganic-organic sensitized triplet-triplet annihilation upconversion (TTA-UC) is promising for applications such as photovoltaics, light-emitting-diodes, photocatalysis, additive manufacturing, and bioimaging. The efficiency of TTA-UC depends on the population of triplet excitons involved in triplet energy transfer (TET), the driving force in TET, and the coupling strength between the donor and acceptor. Consequently, achieving highly efficient TTA-UC necessitates the precise control of the electronic states of inorganic donors. However, conventional covalently bonded nanocrystals (NCs) face significant challenges in this regard. Herein, a novel strategy to exert control over electronic states is proposed, thereby enhancing TET and TTA-UC by incorporating ionic-bonded CsPbBr3 and lanthanide Ce3+ ions into composite NCs. These composite-NCs exhibit high photoluminescence quantum yield, extended single-exciton lifetime, quantum confinement, and uplifted energy levels. This engineering strategy of electronic states engendered a comprehensive impact, augmenting the population of triplet excitons participating in the TET process, enhancing coupling strength and the driving force, ultimately leading to an unconventional, dopant concentration-dependent nonlinear enhancement of UC efficiency. This work not only advances fundamental understanding of hybrid TTA-UC but also opens a door for the creation of other ionic-bonded composite NCs with tunable functionalities, promising innovations for next-generation optoelectronic applications.

2.
Opt Lett ; 47(7): 1578-1581, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363682

RESUMO

Nonvolatile and giant modulation of luminescence can be realized by the ferroelectric gating effect in a Ga3+/Pr3+ co-doped BaTiO3 ultra-thin film epitaxially grown on a [Pb(Mg1/3Nb2/3)O3]0.7-[PbTiO3]0.3 single-crystallized substrate. The change behavior of the emission intensity matches that of the ferroelectric polarization hysteresis loop with a giant enhancement of over 13 times with negative polarization orientation. The interaction of O2- at the O2p orbital in the valence band and Pr3+ with injected holes by the ferroelectric gating effect promotes the formation of excited state O-, Pr4+, or Pr3+q. This ferroelectric gating method can promote the development of controllable photo-, electroluminescent, and other optoelectronic devices for display, sensing, communication, and so on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...